Subgraphs of Large Connectivity and Chromatic Number in Graphs of Large Chromatic Number

N. Alon
DEPARTMENT OF MATHEMATICS
TEL AVIV UNIVERSITY RAMAT AVIV, TEL AVIV 69978
ISRAEL
D. Kleitman
DEPARTMENT OF MATHEMATICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139
C. Thomassen
MATHEMATICAL INSTITUTE, BLD. 303 TECHNICAL UNIVERSITY OF DENMARK DK-2800 LYNGBY DENMARK
M. Saks and P. Seymour
BELL COMMUNICATIONS RESEARCH
435 SOUTH STREET
MORRISTOWN, NEW JERSEY 07960

Abstract

For each pair k, m of natural numbers there exists a natural number $f(k, m)$ such that every $f(k, m)$-chromatic graph contains a k-connected subgraph of chromatic number at least m.

INTRODUCTION

Mader [1] proved that every graph of minimum degree at least $4 k$ contains a k-connected subgraph. Thus every $(4 k+1)$-chromatic graph contains a k-connected subgraph. In this note we show that a graph of sufficiently large chromatic number contains a subgraph that has both large connectivity and large chromatic number. This result, which is useful for finding general configurations in graphs of large chromatic number (see [3]), was first stated in [2] but the proof given there is in error. We prove the following:

Theorem. Every graph G of chromatic number greater than $p=\max$ $\left(100 k^{3}, 10 k^{2}+m\right)$ contains a $(k+1)$-connected subgraph of chromatic number at least m.

NOTATION AND PROOF OF THE THEOREM

For any vertex set A of G we denote by $G(A)$ the subgraph of G induced by A and $G-A$ denotes $G[V(G) \backslash A]$. As usual $\chi(G)$ denotes the chromatic number of G. The number of neighbors in A of a vertex v is denoted $d_{A}(v)$. The A-weight of v is defined as

$$
w_{A}(v)=2 k+1-\frac{2 k}{p} \min \left[d_{A}(v), p\right]
$$

and, for each vertex set S of G, we put

$$
w_{A}(S)=\sum w_{A}(v),
$$

where the summation is taken over all v in S. Note that $w_{A}(S) \geq 1$ always. Finally, we put $W=10 k^{2}$.

We now prove the theorem. Without loss of generality we can assume that G is $(p+1)$-color-critical and hence all vertices of G have degree at least p. If G is $(k+1)$-connected, there is nothing to prove, so G has a separating vertex set S with at most k vertices. If A is the union of the (vertex sets of) some connected components of $G-S$ then clearly

$$
\begin{equation*}
|S| \leq w_{A}(S) \leq W \tag{1}
\end{equation*}
$$

Among all pairs S, A where S is a separating vertex set and A the union of some (but not all) vertex sets of connected components of $G-S$ satisfying (1), we choose one such that $|A|$ is minimal. We shall prove that $G(A \cup S)$ has the desired properties.

$$
\begin{equation*}
\chi[G(A \cup S)] \geq m \tag{2}
\end{equation*}
$$

Proof of (2). Since G is $(p+1)$-color-critical, $\chi(G-A) \leq p$. If $\chi[G(A)] \leq p-|S|$, then any p-coloring of $G-A$ can be extended to a p-coloring of G, which is impossible. So $\chi[G(A)]>p-|S|$ and, by (1)

$$
\chi[G(A \cup S)] \geq \chi[G(A)] \geq p-|S|+1>10 k^{2}+m-W=m
$$

which proves (2).
It remains to be shown that $G(A \cup S)$ is $(k+1)$-connected. We first prove an auxiliary result:

$$
\begin{equation*}
\text { For each } v \text { in } S, d_{A}(v) \geq k+1 . \tag{3}
\end{equation*}
$$

Proof of (3) (by contradiction). Suppose that $d_{A}(v) \leq k$ for some v in S. Let N be the set of neighbors of v in A. Since A is nonempty and G has minimum degree at least p, it follows that

$$
|A| \geq p+1-|S| \geqslant p+1-W>k
$$

We put $S^{\prime}=(S \backslash\{v\}) \cup N$ and $A^{\prime}=A W$. Then $0<\left|A^{\prime}\right|<|A|$ and, for every vertex u in N,

$$
d_{A^{\prime}}(u) \geq p-W-k+1
$$

Hence

$$
\sum_{u \in N} w_{A^{\prime}}(u)<k\left[2 k+1-\frac{2 k}{p}(p-W-k)\right] .
$$

Also

$$
w_{A^{\prime}}(S)-w_{A}(S) \leq W \frac{2 k}{p} k .
$$

Combining the last two inequalities we get

$$
\begin{aligned}
w_{A}^{\prime}\left(S^{\prime}\right) & \leq w_{A}(S)+W \frac{2 k}{p} k-w_{A}(v)+k\left[2 k+1-\frac{2 k}{p}(p-W-k)\right] \\
& \leq W+W \frac{2 k^{2}}{p}-2 k-1+\frac{2 k^{2}}{p}+k\left(1+\frac{2 k W}{p}+\frac{2 k^{2}}{p}\right) \\
& \leq W+\frac{1}{5} k-2 k-1+\frac{1}{50 k}+k+\frac{1}{5} k+\frac{1}{50} \\
& <W
\end{aligned}
$$

Hence the pair S^{\prime}, A^{\prime} satisfies (1), contradicting the minimality of $|A|$. This proves (3).

$$
\begin{equation*}
G(A \cup S) \text { is }(k+1) \text {-connected. } \tag{4}
\end{equation*}
$$

Proof of (4) (by contradiction). Suppose S^{\prime} is a separating vertex set of $G(A \cup S)$ such that $\left|S^{\prime}\right| \leq k$. Then the vertex set of $G(A \cup S)-S^{\prime}$ can be partitioned into two nonempty sets $A_{1} \cup S_{1}$ and $A_{2} \cup S_{2}$ such that there is no edge from $A_{1} \cup S_{1}$ to $A_{2} \cup S_{2}$ and $A_{1} \cup A_{2} \subseteq A, S_{1} \cup S_{2} \subseteq S$. By (3), each of A_{1}, A_{2} is nonempty. Then each of $S^{\prime} \cup S_{1}$ and $S^{\prime} \cup S_{2}$ is a separating vertex set of G and without loss of generality we can assume that

$$
w_{A}\left(S_{1}\right) \leq w_{A}\left(S_{2}\right) \leq W .
$$

In particular, $w_{A}\left(S_{1}\right) \leq(W / 2)$. Now

$$
\begin{aligned}
w_{A_{1}}\left(S^{\prime} \cup S_{1}\right) & =w_{A_{1}}\left(S^{\prime}\right)+\left[w_{A_{1}}\left(S_{1}\right)-w_{A}^{\prime}\left(S_{1}\right)\right]+w_{A_{A}}\left(S_{1}\right) \\
& \leq k(2 k+1)+\frac{W}{2} \frac{2 k}{p} \cdot k+\frac{W}{2} \\
& \leq W .
\end{aligned}
$$

Hence the pair $S^{\prime} \cup S_{1}, A_{1}$ satisfies (1), contradicting the minimality of $|A|$. This proves (4) and the theorem.

The Theorem shows that

$$
f(k, m) \leq 100 k^{3}+m,
$$

where $f(k, m)$ is the (smallest) number satisfying the statement of the abstract. We obtain the lower bound

$$
f(k, m) \geq k+m-2
$$

as follows: Take $k-1$ disjoint copies of the complete graph K_{k-1}. For each vertex set S containing precisely one vertex of each K_{k-1} we add a K_{m-2} and join it completely to S. Then the resulting graph $G_{k, m}$ has chromatic number $k+m-3$ and no k-connected subgraph of $G_{k, m}$ contains vertices of two distinct $K_{m-2}-s$. Hence every k-connected subgraph of $G_{k, m}$ is ($m-1$)colorable.

References

[1] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend grossen Kantendichte, Abh. Math. Sem. Hamburg Univ. 37 (1972) 86-97.
[2] C. Thomassen, Graph decomposition with applications to subdivisions and path systems modulo k. J. Graph Theory 7 (1983) 261-271.
[3] C. Thomassen, Configurations in graphs of large minimum degree, connectivity or chrematic number. To appear.

