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ABSTRACT 

For each pair k ,  rn of natural numbers there exists a natural number 
f ( k ,  rn) such that every f ( k ,  m)-chromatic graph contains a k-connected 
subgraph of chromatic number at least rn. 
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INTRODUCTION 

Mader [ I ]  proved that every graph of minimum degree at least 4k contains 
a k-connected subgraph. Thus every (4k + I)-chromatic graph contains a 
k-connected subgraph. In this note we show that a graph of sufficiently large 
chromatic number contains a subgraph that has both large connectivity and 
large chromatic number. This result, which is useful for finding general con- 
figurations in graphs of large chromatic number (see 131). was first stated in 121 
but the proof given there is in error. We prove the following: 

Theorem. Every graph G of chromatic number greater than p = max 
(look3, 10k’ + m) contains a ( k  + 1)-connected subgraph of chromatic number 
at least m. 

NOTATION AND PROOF OF THE THEOREM 

For any vertex set A of G we denote by G(A) the subgraph o f  G induced by A 
and G - A denotes G[V(G)\A]. As usual x ( G )  denotes the chromatic number 
of G.  The number of neighbors in A of a vertex u is denoted d , ( u ) .  The 
A-weight of u is defined as 

2k 

P 
w,(u) = 2k + 1 - - min[d,(u),p] 

and, for each vertex set S of G, we put 

where the summation is taken over all u in S. Note that w,,(S) 2 1 always. 
Finally, we put W = IOk’. 

We now prove the theorem. Without loss of generality we can assume that G 
is ( p  + 1)-color-critical and hence all vertices of G have degree at least p .  If G 
is ( k  + 1)-connected, there is nothing to prove, so G has a separating vertex 
set S with at most k vertices. If A is the union of the (vertex sets of) some con- 
nected components of G - S then clearly 

Among all pairs S,A where S is a separating vertex set and A the union of some 
(but not all) vertex sets of connected components of G - S satisfying ( l ) ,  we 
choose one such that IAI is minimal. We shall prove that G(A U S) has the 
desired properties. 

x[G(A U S ) ]  2 m .  (2) 
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Proof of ( 2 ) .  Since G is ( p  + 1)-color-critical, x (G  - A )  5 p .  I f  
x[G(A)] 5 p - \St. then any p-coloring of G - A can be extended to a 
p-coloring of G, which is impossible. So x[G(A)] > p - IS1 and, by (1) 

x[G(A U S ) ]  2 x[G(A)] 2 p - IS1 + 1 > 10k’ + in - !A’ = m. 

which proves ( 2 ) .  

It remains to be shown that G(A U S )  is ( k  + I)-connected. We first prove an 
auxiliary result: 

For each u in S,d,,(u) 2 k + 1 .  (3) 

Proof of (3) (by contradiction). Suppose that ( I , ( U )  5 k for some u in S. 
Let N be the set of neighbors of u in A .  Since A is nonempty and G has mini- 
mum degree at least p ,  it follows that 

We put S ’  = (S\{u}) U N and A ‘ = AW. Then 0 < IA ’ I  < IA I and, for every 
vertex u in N ,  

dA.(u) 1) p - W - k + 1 . 

Hence 

Also 

2k 
P 

MJ,,.(S) - W , ( S )  5 W - k  

Combining the last two inequalities we get 

P 

2k‘ r W  + W -  - 2 k -  1 
P 
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Hence the pair S ’ , A ’  satisfies ( l ) ,  contradicting the minimality of \ A \ .  This 
proves ( 3 ) .  

G ( A  U S) is (k + 1)-connected. (4) 

Proof of (4) (by contradiction). Suppose S‘  is a separating vertex set of 
G ( A  U S )  such that IS‘/ 5 k. Then the vertex set of G(A U S )  - S‘  can be 
partitioned into two nonempty sets A ,  U S, and A? U S2 such that there is no 
edge from A ,  U S ,  to A2 U S, and A ,  U A ,  C_ A ,  S ,  U S,  C S. By (3) ,  each of 
A , ,  A2 is nonenipty. Then each of S’  U S, and S’ U Sz is a separating vertex 
set of G and without loss of generality we can assume that 

In particular, w,(S, )  5 (W/2). Now 

W 2k W 
5 k(2k + 1 )  + - - .  k + -- 

2 P  2 

Hence the pair S‘  U S, ,  A ,  satisfies ( I ) ,  contradicting the minimality of \ A \ .  
This proves (4) and the theorem. 

The Theorem shows that 

f ( k , m )  5 look3 + m , 

where f ( k ,  m )  is the (smallest) number satisfying the statement of thc abstract. 
We obtain the lower bound 

f(k,m) 2 k + m - 2 

as follows: Take k - 1 disjoint copies of the complete graph K k - l .  For each 
vertex set S containing precisely one vertex of each Kk-] we add a K , , - :  and 
join it completely to S .  Then the resulting graph GP.,,, has chromatic number 
k + m - 3 and no k-connected subgraph of GL,,,, contains vertices of two 
distinct K,, .2  - s. Hence every k-connected subgraph of GL,,n is (m - I ) -  
colorable. 

References 

[ I  J W. Mader, Existenz n-fach zusammcnhiingender Teilgraphen in Graphen 
geniigend grossen Kantendichte, A b h .  Math. Sem.  Hamburg Univ.  37 
(1972) 86-97. 



SUBGRAPHS OF LARGE CONNECTIVITY AND CHROMATIC NUMBER 371 

[2]  C. Thomassen, Graph decomposition with applications to subdivisions and 

[3] C. Thomassen, Configurations in graphs of large minimum degree, connec- 
path systems modulo k. J .  Graph Theory 7 (1983) 261-271. 

tivity or chrcmatic number. To appear. 




